基于破碎处理的家庭厨余垃圾减量及其对下水的影响

吴远远, Giwa Abdulmoseen Segun, 郑明霞, 王凯军. 基于破碎处理的家庭厨余垃圾减量及其对下水的影响[J]. 环境工程学报, 2016, 10(5): 2576-2580. doi: 10.12030/j.cjee.201412211
引用本文: 吴远远, Giwa Abdulmoseen Segun, 郑明霞, 王凯军. 基于破碎处理的家庭厨余垃圾减量及其对下水的影响[J]. 环境工程学报, 2016, 10(5): 2576-2580. doi: 10.12030/j.cjee.201412211
Wu Yuanyuan, Giwa Abdulmoseen Segun, Zheng Mingxia, Wang Kaijun. Household kitchen waste treatment based on food waste disposers in China[J]. Chinese Journal of Environmental Engineering, 2016, 10(5): 2576-2580. doi: 10.12030/j.cjee.201412211
Citation: Wu Yuanyuan, Giwa Abdulmoseen Segun, Zheng Mingxia, Wang Kaijun. Household kitchen waste treatment based on food waste disposers in China[J]. Chinese Journal of Environmental Engineering, 2016, 10(5): 2576-2580. doi: 10.12030/j.cjee.201412211

基于破碎处理的家庭厨余垃圾减量及其对下水的影响

  • 基金项目:

    国家科技支撑计划项目(2014BAC27B01)

    国家水体污染控制与治理科技重大专项(2012ZX07205-002)

    国家环境保护技术管理与评估工程技术中心开放基金(GCZX2015001)

  • 中图分类号: X705

Household kitchen waste treatment based on food waste disposers in China

  • Fund Project:
  • 摘要: 在对我国家庭厨余垃圾的组成及性质、污水管道设计、污水处理厂运行状况的调查研究基础上,初步探讨了基于厨房垃圾粉碎机的家庭厨余垃圾减量及其对下水系统的影响。家庭厨余垃圾生成量(湿重)平均为152 g/(人·d),其中易降解的蔬菜水果垃圾占到77.8%。家庭厨余垃圾的COD:TN:TP=400.9:4.7:1,可能导致污水处理厂的总COD、TN、TP和氨氮理论提高量分别为66.70、0.86、0.18和0.43 mg/L,会在一定程度上缓解我国污水处理厂碳源不足的现状。厨房垃圾粉碎机使用后,人均用水最大增加量为1.5 L/(人·d),破碎时间短基本介于1~3.5 min之间。破碎后的厨余垃圾颗粒含水率高,密度略大于水,其在管道中起动的临界流速为0.02 m/s远小于0.6 m/s,故因厨房垃圾粉碎机使用引起的污水管网堵塞的可能性小。
  • [1] Qu Xiaoyan, Li Zhenshan, Xie Xinyuan, et al. Survey of composition and generation rate of household wastes in Beijing, China. Waste Management, 2009, 29(10): 2618-2624
    [2] Gunaseelan V. N. Anaerobic digestion of biomass for methane production: A review. Biomass and Bioenergy, 1997, 13(1-2): 83-144
    [3] Cho J. K., Park S. C., Chang H. N. Biochemical methane potential and solid state anaerobic digestion of Korean food wastes. Bioresource Technology, 1995,52(3): 245-253
    [4] 徐栋, 沈东升, 冯华军. 厨余垃圾的特性及处理技术研究进展. 科技通报, 2011, 27(1): 130-135 Xu Dong, Shen Dongsheng, Feng Huajun. Discussion on characteristics of and resource recycling technology of food residue. Bulletin of Science and Technology, 2011,27(1):130-135(in Chinese)
    [5] 张振华, 汪华林, 胥培军, 等. 厨余垃圾的现状及其处理技术综述. 再生资源研究, 2007(5): 31-34 Zhang Zhenhua, Wang Hualin, Xu Peijun, et al. Review of kitchen waste treatment technology. Recycling Research, 2007(5):31-34(in Chinese)
    [6] CCRE, CEMR. Green paper on the management of bio-waste in the European Union. Brussels: COM, European Commision, 2008
    [7] New York City Department of Environmental Protection (NYDEP). The Impact of Food Waste Disposers in Combined Sewer Areas of New York City. New York DEP, New York, 1999
    [8] Yang Xinmi, Okashiro T., Kuniyasu K., et al. Impact of food waste disposers on the generation rate and characteristics of municipal solid waste. Journal of Material Cycles and Waste Management, 2010, 12(1): 17-24
    [9] APHA. Standard Methods for the Examination of Water and Wastewater (20th ed.). Washington, DC: American Public Health Association, 1998
    [10] Kegebein J., Erhard H., Hermann H. H. Co-transport and co-reuse-an alternative to separate bio-waste collection? Institute for Municipal Water Treatment, University of Karlsruhe, 2001: 429-434
    [11] Galil N., Shpiner R. Additional pollutants and deposition potential from garbage disposers. Water and Environment Journal, 2001, 15(1): 34-39
    [12] Evans T. D., Andersson P., Wievegg A., et al. Surahammara: A case study of the impacts of installing food waste disposers in 50% of households. Water and Environment Journal, 2010, 24(4): 309-319
    [13] 中华人民共和国建设部. GB 50014-2006 室外排水设计规范. 北京: 中国计划出版社, 2012
    [14] Battistoni P., Fatone F., Passacantandoa D., et al. Application of food waste disposers and alternate cycles process in small-decentralized towns: A case study. Water Research, 2007, 41(4): 893-903
    [15] De Koning J., van der Graaf J. H. J. M. Kitchen food waste disposers, effect on sewage system and wastewater treatment. Department of Water Management, Environmental & Sanitary Engineering, Delft University of Technology, 1996
  • 加载中
计量
  • 文章访问数:  1837
  • HTML全文浏览数:  1486
  • PDF下载数:  927
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-02-08
  • 刊出日期:  2016-06-03
吴远远, Giwa Abdulmoseen Segun, 郑明霞, 王凯军. 基于破碎处理的家庭厨余垃圾减量及其对下水的影响[J]. 环境工程学报, 2016, 10(5): 2576-2580. doi: 10.12030/j.cjee.201412211
引用本文: 吴远远, Giwa Abdulmoseen Segun, 郑明霞, 王凯军. 基于破碎处理的家庭厨余垃圾减量及其对下水的影响[J]. 环境工程学报, 2016, 10(5): 2576-2580. doi: 10.12030/j.cjee.201412211
Wu Yuanyuan, Giwa Abdulmoseen Segun, Zheng Mingxia, Wang Kaijun. Household kitchen waste treatment based on food waste disposers in China[J]. Chinese Journal of Environmental Engineering, 2016, 10(5): 2576-2580. doi: 10.12030/j.cjee.201412211
Citation: Wu Yuanyuan, Giwa Abdulmoseen Segun, Zheng Mingxia, Wang Kaijun. Household kitchen waste treatment based on food waste disposers in China[J]. Chinese Journal of Environmental Engineering, 2016, 10(5): 2576-2580. doi: 10.12030/j.cjee.201412211

基于破碎处理的家庭厨余垃圾减量及其对下水的影响

  • 1. 清华大学环境学院环境模拟与污染控制国家重点联合实验室, 北京 100084
基金项目:

国家科技支撑计划项目(2014BAC27B01)

国家水体污染控制与治理科技重大专项(2012ZX07205-002)

国家环境保护技术管理与评估工程技术中心开放基金(GCZX2015001)

摘要: 在对我国家庭厨余垃圾的组成及性质、污水管道设计、污水处理厂运行状况的调查研究基础上,初步探讨了基于厨房垃圾粉碎机的家庭厨余垃圾减量及其对下水系统的影响。家庭厨余垃圾生成量(湿重)平均为152 g/(人·d),其中易降解的蔬菜水果垃圾占到77.8%。家庭厨余垃圾的COD:TN:TP=400.9:4.7:1,可能导致污水处理厂的总COD、TN、TP和氨氮理论提高量分别为66.70、0.86、0.18和0.43 mg/L,会在一定程度上缓解我国污水处理厂碳源不足的现状。厨房垃圾粉碎机使用后,人均用水最大增加量为1.5 L/(人·d),破碎时间短基本介于1~3.5 min之间。破碎后的厨余垃圾颗粒含水率高,密度略大于水,其在管道中起动的临界流速为0.02 m/s远小于0.6 m/s,故因厨房垃圾粉碎机使用引起的污水管网堵塞的可能性小。

English Abstract

参考文献 (15)

返回顶部

目录

/

返回文章
返回