直接还原法回收铜渣中铁、铜和锌的热力学

赵凯, 宫晓然, 李杰, 刘卫星, 邢宏伟. 直接还原法回收铜渣中铁、铜和锌的热力学[J]. 环境工程学报, 2016, 10(5): 2638-2646. doi: 10.12030/j.cjee.201412190
引用本文: 赵凯, 宫晓然, 李杰, 刘卫星, 邢宏伟. 直接还原法回收铜渣中铁、铜和锌的热力学[J]. 环境工程学报, 2016, 10(5): 2638-2646. doi: 10.12030/j.cjee.201412190
Zhao Kai, Gong Xiaoran, Li Jie, Liu Weixing, Xing Hongwei. Thermodynamics of recovering iron, copper, zinc in copper slag by direct reduction method[J]. Chinese Journal of Environmental Engineering, 2016, 10(5): 2638-2646. doi: 10.12030/j.cjee.201412190
Citation: Zhao Kai, Gong Xiaoran, Li Jie, Liu Weixing, Xing Hongwei. Thermodynamics of recovering iron, copper, zinc in copper slag by direct reduction method[J]. Chinese Journal of Environmental Engineering, 2016, 10(5): 2638-2646. doi: 10.12030/j.cjee.201412190

直接还原法回收铜渣中铁、铜和锌的热力学

  • 基金项目:

    河北省自然科学基金-钢铁联合基金资助项目(E2014209113)

    唐山市科技计划项目(14110208a)

  • 中图分类号: X705

Thermodynamics of recovering iron, copper, zinc in copper slag by direct reduction method

  • Fund Project:
  • 摘要: 为了实现铜渣中的铁与硅及其他元素分离,提出了含碳球团-转底炉直接还原工艺综合回收铜渣中的铁、铜和锌等有价元素,首先对水淬铜渣配碳还原进行了热力学分析,然后采用FactSage热力学计算软件中的Equilib模块对碳热还原过程进行了理论计算,研究了温度、碱度和配碳量等工艺参数,对水淬铜渣碳热还原产物组成及收得率的影响。计算结果表明:Fe的收得率主要受温度的影响较大,碱度的影响不大,配碳量有一定影响,铁的收得率最高可以达到91%以上;Zn的收得率主要受温度的影响较大,900 ℃左右达到最大;Cu的收得率最高可达99%,并且受上述因素的影响相对小。为了保证铁的收得率,建议优化的工艺条件为:配碳量(C/O比)大于1.2、还原温度大于1 200 ℃、碱度大于0.6。
  • [1] 汤宏. 铜渣选矿实验的探讨. 有色矿山, 2001, 30(5): 38-40 Tang Hong. Discussion on concentrating test of copper cinder. Nonferrous Mines, 2001, 30(5): 38-40(in Chinese)
    [2] 陈知若. 粗铜熔炼技术改造. 有色冶炼, 1992(3): 28-37 Chen Zhiruo. Blister copper smelting technology reform. Nonferrous Smelting, 1992(3): 28-37(in Chinese)
    [3] 陈远望. 智利铜炉渣贫化方法概述. 世界有色金属, 2001(9): 53-58 Chen Yuanwang. Cleaning of copper smelting slag in Chile. World Nonferrous Metals, 2001(9): 53-58(in Chinese)
    [4] Banda W., Morgan N., Eksteen J. J. The role of slag modifiers on the selective recovery of cobalt and copper from waste smelter slag. Minerals Engineering, 2002, 15(11): 899-907
    [5] 张林楠, 张力, 王明玉, 等. 铜渣的处理与资源化. 矿产综合利用, 2005(5): 22-27 Zhang Linnan, Zhang Li, Wang Mingyu, et al. Treatment and resourceful disposal of copper slag. Multipurpose Utilization of Mineral Resources, 2005(5): 22-27(in Chinese)
    [6] 吴礼杰. 转炉渣中有价金属的选别. 矿业研究与开发, 2001, 21(4): 29-31 Wu Lijie. Selective recovery of valuable metals from rotary furnace slag. Mining R & D, 2001, 21(4): 29-31(in Chinese)
    [7] Banza A. N., Gock E., Kongolo K. Base metals recovery from copper smelter slag by oxidising leaching and solvent extraction. Hydrometallurgy, 2002, 67(1-3): 63-69
    [8] 王珩. 炼铜转炉渣中铜铁的选矿研究. 有色矿山, 2003, 32(4): 19-23 Wang Heng. Study on copper and iron concentrating from coverter slag of copper smelting. Nonferrous Mines, 2003, 32(4): 19-23(in Chinese)
    [9] 孙培梅, 魏岱金, 李洪桂, 等. 铜渣氯浸渣中有价元素分离富集工艺. 中南大学学报(自然科学版), 2005, 36(1): 38-43 Sun Peimei, Wei Daijin, Li Honggui, et al. Separation and enrichment of valuable elements from copper residue leached by chlorine. Journal of Central South University (Science and Technology), 2005, 36(1): 38-43(in Chinese)
    [10] 秦洁. 含碳球团转底炉直接还原的关键技术. 钢铁研究, 2012, 40(5): 55-59 Qin Jie. Study on key technologies of rotary hearth furnace for direct reduction process to deal with carbon containing pellet. Research on Iron and Steel, 2012, 40(5): 55-59(in Chinese)
    [11] 伦志刚, 胡途, 吕学伟. 多层含碳球团转底炉内直接还原行为. 钢铁, 2013, 48(1): 15-19 Lun Zhigang, Hu Tu, Lü Xuewei. Direct reduction behavior of multi-layer pellets with carbon-containing in rotary hearth furnace. Iron and Steel, 2013, 48(1): 15-19(in Chinese)
    [12] 曹战民, 宋晓艳, 乔芝郁. 热力学模拟计算软件FactSage及其应用. 稀有金属, 2008, 32(2): 216-219 Cao Zhanmin, Song Xiaoyan, Qiao Zhiyu. Thermodynamic modeling software FactSage and its application. Chinese Journal of Rare Metals, 2008, 32(2): 216-219(in Chinese)
    [13] 梅贤功, 孙宗毅, 陈荩. 高铁赤泥煤基直接还原过程中固相反应的热力学分析. 轻金属, 1994(7): 8-12 Mei Xiangong, Sun Zongyi, Chen Jin. Thermodynamic analysis of solid state reaction in high iron red mud coal-based direct reduction process. Light Metals, 1994(7): 8-12(in Chinese)
    [14] 曹新鑫, 胡蕾阳, 樊斌斌, 等. 五水硫酸铜脱水机理及硫酸铜高温分解的热力学研究. 精细与专用化学品, 2011, 19(6): 30-32 Cao Xinxin, Hu Leiyang, Fan Binbin, et al. The study of thermodynamics on the dehydration mechanism of CuSO4·5H2O and the heat decomposition of CuSO4. Fine and Specialty Chemicals, 2011, 19(6): 30-32(in Chinese)
    [15] Hara Y. S. R. Mineral sulphide-lime reactions and effect of CaO/C mole ratio during carbothermic reduction of complex mineral sulphides. International Journal of Minerals, Metallurgy, and Materials, 2014, 21(1): 1-11
    [16] 徐采栋, 林蓉, 汪大成. 锌冶金物理化学. 上海: 上海科学技术出版社, 1979: 40-66, 143-150
    [17] 张芳, 李荣, 安胜利, 等. Zn在高炉中热力学行为研究. 内蒙古科技大学学报, 2012, 31(3): 213-217 Zhang Fang, Li Rong, An Shengli, et al. Thermodynamic behavior of zinc in blast furnace. Journal of Inner Mongolia University of Science and Technology, 2012, 31(3): 213-217(in Chinese)
  • 加载中
计量
  • 文章访问数:  1922
  • HTML全文浏览数:  1523
  • PDF下载数:  268
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-02-26
  • 刊出日期:  2016-06-03
赵凯, 宫晓然, 李杰, 刘卫星, 邢宏伟. 直接还原法回收铜渣中铁、铜和锌的热力学[J]. 环境工程学报, 2016, 10(5): 2638-2646. doi: 10.12030/j.cjee.201412190
引用本文: 赵凯, 宫晓然, 李杰, 刘卫星, 邢宏伟. 直接还原法回收铜渣中铁、铜和锌的热力学[J]. 环境工程学报, 2016, 10(5): 2638-2646. doi: 10.12030/j.cjee.201412190
Zhao Kai, Gong Xiaoran, Li Jie, Liu Weixing, Xing Hongwei. Thermodynamics of recovering iron, copper, zinc in copper slag by direct reduction method[J]. Chinese Journal of Environmental Engineering, 2016, 10(5): 2638-2646. doi: 10.12030/j.cjee.201412190
Citation: Zhao Kai, Gong Xiaoran, Li Jie, Liu Weixing, Xing Hongwei. Thermodynamics of recovering iron, copper, zinc in copper slag by direct reduction method[J]. Chinese Journal of Environmental Engineering, 2016, 10(5): 2638-2646. doi: 10.12030/j.cjee.201412190

直接还原法回收铜渣中铁、铜和锌的热力学

  • 1. 华北理工大学冶金与能源学院, 唐山 063009
基金项目:

河北省自然科学基金-钢铁联合基金资助项目(E2014209113)

唐山市科技计划项目(14110208a)

摘要: 为了实现铜渣中的铁与硅及其他元素分离,提出了含碳球团-转底炉直接还原工艺综合回收铜渣中的铁、铜和锌等有价元素,首先对水淬铜渣配碳还原进行了热力学分析,然后采用FactSage热力学计算软件中的Equilib模块对碳热还原过程进行了理论计算,研究了温度、碱度和配碳量等工艺参数,对水淬铜渣碳热还原产物组成及收得率的影响。计算结果表明:Fe的收得率主要受温度的影响较大,碱度的影响不大,配碳量有一定影响,铁的收得率最高可以达到91%以上;Zn的收得率主要受温度的影响较大,900 ℃左右达到最大;Cu的收得率最高可达99%,并且受上述因素的影响相对小。为了保证铁的收得率,建议优化的工艺条件为:配碳量(C/O比)大于1.2、还原温度大于1 200 ℃、碱度大于0.6。

English Abstract

参考文献 (17)

返回顶部

目录

/

返回文章
返回