铁碳微电解-混凝对印染废水二级生化出水的深度处理

曾超, 陈红, 薛罡, 李响, 刘亚男. 铁碳微电解-混凝对印染废水二级生化出水的深度处理[J]. 环境工程学报, 2016, 10(5): 2478-2484. doi: 10.12030/j.cjee.201412153
引用本文: 曾超, 陈红, 薛罡, 李响, 刘亚男. 铁碳微电解-混凝对印染废水二级生化出水的深度处理[J]. 环境工程学报, 2016, 10(5): 2478-2484. doi: 10.12030/j.cjee.201412153
Zeng Chao, Chen Hong, Xue Gang, Li Xiang, Liu Yanan. Advanced treatment of the secondary biochemical effluent of dyeing wastewater via Fe-C microelectrolysis-coagulation[J]. Chinese Journal of Environmental Engineering, 2016, 10(5): 2478-2484. doi: 10.12030/j.cjee.201412153
Citation: Zeng Chao, Chen Hong, Xue Gang, Li Xiang, Liu Yanan. Advanced treatment of the secondary biochemical effluent of dyeing wastewater via Fe-C microelectrolysis-coagulation[J]. Chinese Journal of Environmental Engineering, 2016, 10(5): 2478-2484. doi: 10.12030/j.cjee.201412153

铁碳微电解-混凝对印染废水二级生化出水的深度处理

  • 基金项目:
  • 中图分类号: X703

Advanced treatment of the secondary biochemical effluent of dyeing wastewater via Fe-C microelectrolysis-coagulation

  • Fund Project:
  • 摘要: 针对印染废水二级生化出水水质难降解且难以达标的现状,研究在不调节pH的前提下,采用铁碳微电解混凝工艺进行处理研究。通过单因素实验确定最优条件范围,建立响应面(response surface methods, RSM)分析实验,确定铁碳微电解的最佳工艺条件为:Fe的投量为72.1 g/L、m(C):m(Fe)为2.98:1、水力停留时间(HRT)为2.6 h。最佳混凝条件为:Al2(SO4)3投量为100 mg/L、混凝沉淀时间为30 min。实验结果表明,在上述最优工艺条件下对该废水进行深度处理,对COD的去除率能达到50%以上,出水COD低至46.1 mg/L,达到提标后的《纺织染整工业水污染物排放标准》新标准(COD≤60 mg/L),其药剂处理成本为每吨印染废水0.355元左右,该法技术可行、经济合理。
  • [1] 刘忠, 张兰翔. 浅析印染废水处理工艺现状. 科技视界, 2014(25): 261 Liu Zhong, Zhang Lanxiang. A simple analysis of dyeing wastewater treatment process. Science & Technology Vision, 2014(25): 261(in Chinese)
    [2] Cheng Hefa, Xu Weipu, Liu Junliang, et al. Pretreatment of wastewater from triazine manufacturing by coagulation, electrolysis, and internal microelectrolysis. Journal of Hazardous Materials, 2007, 146(1-2): 385-392
    [3] 吴傲立, 鲍建国, 龚珞军. 铁碳微电解预处理汽车电泳涂装废水. 环境工程学报, 2014, 8(9): 3843-3847 Wu Aoli, Bao Jianguo, Gong Luojun. Pretreatment of auto electrocoating wastewater by Fe-C micro-electrolysis. Chinese Journal of Environmental Engineering, 2014, 8(9): 3843-3847(in Chinese)
    [4] 方俊华, 任立清, 刘兰, 等. 铁碳微电解-Fenton法预处理苯胺基乙腈生产废水的动力学研究. 环境工程学报, 2014, 8(4): 1397-1404 Fang Junhua, Ren Liqing, Liu Lan, et al. Pretreatment of N-phenylglycinonitrile wastewater by combining iron-carbon micro-electrolysis with Fenton reagent. Chinese Journal of Environmental Engineering, 2014, 8(4): 1397-1404(in Chinese)
    [5] 石金晔, 王三反, 高晓东. 铁碳微电解法预处理炸药生产废水. 中国给水排水, 2009, 25(7): 59-61 Shi Jinye, Wang Sanfan, Gao Xiaodong. Pretreatment of wastewater from explosive production by iron-carbon micro-electrolysis process. China Water & Wastewater, 2009, 25(7): 59-61(in Chinese)
    [6] 王玲. 铁炭微电解/Fenton/絮凝工艺预处理高浓度难降解有机废水的研究. 杭州: 浙江工业大学硕士学位论文, 2010 Wang Ling. Pretreatment of high strength and refractory organic wastewater by Fe-C micro-electrolysis/Fenton/coagulation combined process. Hangzhou: Master Dissertation of Zhejiang University of Technology, 2010(in Chinese)
    [7] 方俊华, 刘兰, 穆军伟. 铁碳微电解-Fenton法预处理苯胺基乙腈生产废水. 环境工程学报, 2013, 7(7): 2401-2408 Fang Junhua, Liu Lan, Mu Junwei. Pretreatment of N-phenylglycinonitrile wastewater by combining iron-carbon micro-electrolysis with Fenton reagent. Chinese Journal of Environmental Engineering, 2013, 7(7): 2401-2408(in Chinese)
    [8] 张默贺, 叶正芳, 赵泉林, 等. 铁碳微电解预处理TNT红水. 环境工程学报, 2012, 6(9): 3115-3120 Zhang Mohe, Ye Zhengfang, Zhao Quanlin, et al. Pretreatment of TNT red water by iron-carbon micro-electrolysis process. Chinese Journal of Environmental Engineering, 2012, 6(9): 3115-3120(in Chinese)
    [9] 孙莹莹, 郭爱桐, 葛睿, 等. 铁碳微电解法预处理聚氯乙烯(PVC)离心母液废水. 环境科学与技术, 2014, 37(4): 139-144 Sun Yingying, Guo Aitong, Ge Rui, et al. Pre-treatment of centrifugal mother liquid in polyvinyl chloride production by iron-carbon microelectrolysis technique. Environmental Science & Technology, 2014, 37(4): 139-144(in Chinese)
    [10] Li Meng, Zou Donglei, Zou Haochen, et al. Degradation of nitrobenzene in simulated wastewater by iron-carbon micro-electrolysis packing. Environmental Technology, 2011, 32(15): 1761-1766
    [11] 赖波, 秦红科, 周岳溪, 等. 铁碳微电解预处理ABS凝聚干燥工段废水. 环境科学, 2011, 32(4): 1055-1059 Lai Bo, Qin Hongke, Zhou Yuexi, et al. Wastewater from the condensation and drying section of ABS was pretreated by microelectrolysis. Environmental Science, 2011, 32(4): 1055-1059(in Chinese)
    [12] 任健, 马宏瑞, 马炜宁, 等. Fe/C微电解-Fenton氧化-混凝沉淀-生化法处理抗生素废水的实验研究. 水处理技术, 2011, 37(3): 84-87 Ren Jian, Ma Hongrui, Ma Weining, et al. Study on the treatment of antibiotic wastewater with ferric-carbonmicroelectrolysis-Fenton oxidation coagulation sedimentation-biochemical process. Technology of Water Treatment, 2011, 37(3): 84-87(in Chinese)
    [13] 石晶. 催化铁内电解法混凝作用及拓展-化学除磷与去除表面活性剂的研究. 上海: 同济大学硕士学位论文, 2007 Shi Jing. Study on coagulation of catalyzed iron internal electrolysis. Shanghai: Master Dissertation of Tongji University, 2007(in Chinese)
    [14] 叶杰旭, 李伟, 何志桥, 等. 微电解/混凝/臭氧氧化强化生物工艺处理制药废水. 中国给水排水, 2014, 30(10): 72-75 Ye Jiexu, Li Wei, He Zhiqiao, et al. Treatment of pharmaceutical wastewater using biological process coupled with micro-electrolysis/coagulation/ozonation process. China Water & Wastewater, 2014, 30(10): 72-75(in Chinese)
    [15] 陈晓鸿, 李天国, 徐晓军, 等. 曝气微电解-曝气絮凝法处理高铅锌含量冶炼废水. 水处理技术, 2013, 39(6): 99-104 Chen Xiaohong, Li Tianguo, Xu Xiaojun, et al. Treatment of high concentrations of lead and zinc smelting wastewater by micro-electrolysis and aerated flocculation. Technology of Water Treatment, 2013, 39(6): 99-104(in Chinese)
    [16] 朱乐辉, 裴浩言, 邱俊. 铁碳微电解/H2O2混凝法处理焦化废水的实验研究. 水处理技术, 2010, 36(8): 117-120 Zhu Lehui, Pei Haoyan, Qiu Jun. Treatment of coking wastewater by combining iron-carbon microelectrolysis/H2O2 coagulation process. Technology of Water Treatment, 2010, 36(8): 117-120(in Chinese)
    [17] 王汉道, 沙育定, 容艳筠. 聚合硅酸硫酸铁处理印染废水的实验研究. 环境技术, 2004(5): 31-34 Wang Handao, Sha Yuding, Rong Yanjun. Experimental studies on treatment of dyeing wastewater by using polyferric silicate sulfate. Environmental Technology, 2004(5): 31-34(in Chinese)
    [18] 陈伟, 劳红标, 戴海润, 等. 二氧化氯联合混凝沉淀技术对印染废水深度处理的应用研究. 环境, 2012(S2): 29-30 Chen Wei, Lao Hongbiao, Dai Hairun, et al. Applied research on advanced treatment of dyeing wastewater via chlorine dioxide combined with coagulation. Environmental, 2012(S2): 29-30(in Chinese)
  • 加载中
计量
  • 文章访问数:  1656
  • HTML全文浏览数:  1295
  • PDF下载数:  840
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-01-14
  • 刊出日期:  2016-06-03
曾超, 陈红, 薛罡, 李响, 刘亚男. 铁碳微电解-混凝对印染废水二级生化出水的深度处理[J]. 环境工程学报, 2016, 10(5): 2478-2484. doi: 10.12030/j.cjee.201412153
引用本文: 曾超, 陈红, 薛罡, 李响, 刘亚男. 铁碳微电解-混凝对印染废水二级生化出水的深度处理[J]. 环境工程学报, 2016, 10(5): 2478-2484. doi: 10.12030/j.cjee.201412153
Zeng Chao, Chen Hong, Xue Gang, Li Xiang, Liu Yanan. Advanced treatment of the secondary biochemical effluent of dyeing wastewater via Fe-C microelectrolysis-coagulation[J]. Chinese Journal of Environmental Engineering, 2016, 10(5): 2478-2484. doi: 10.12030/j.cjee.201412153
Citation: Zeng Chao, Chen Hong, Xue Gang, Li Xiang, Liu Yanan. Advanced treatment of the secondary biochemical effluent of dyeing wastewater via Fe-C microelectrolysis-coagulation[J]. Chinese Journal of Environmental Engineering, 2016, 10(5): 2478-2484. doi: 10.12030/j.cjee.201412153

铁碳微电解-混凝对印染废水二级生化出水的深度处理

  • 1. 东华大学环境科学与工程学院, 上海 201620
基金项目:

摘要: 针对印染废水二级生化出水水质难降解且难以达标的现状,研究在不调节pH的前提下,采用铁碳微电解混凝工艺进行处理研究。通过单因素实验确定最优条件范围,建立响应面(response surface methods, RSM)分析实验,确定铁碳微电解的最佳工艺条件为:Fe的投量为72.1 g/L、m(C):m(Fe)为2.98:1、水力停留时间(HRT)为2.6 h。最佳混凝条件为:Al2(SO4)3投量为100 mg/L、混凝沉淀时间为30 min。实验结果表明,在上述最优工艺条件下对该废水进行深度处理,对COD的去除率能达到50%以上,出水COD低至46.1 mg/L,达到提标后的《纺织染整工业水污染物排放标准》新标准(COD≤60 mg/L),其药剂处理成本为每吨印染废水0.355元左右,该法技术可行、经济合理。

English Abstract

参考文献 (18)

返回顶部

目录

/

返回文章
返回