光合产电微生物群落构建及光照培养对其产电性能的影响

郑伟, 黄满红, 陈东辉, 陈亮. 光合产电微生物群落构建及光照培养对其产电性能的影响[J]. 环境工程学报, 2016, 10(5): 2719-2724. doi: 10.12030/j.cjee.201412113
引用本文: 郑伟, 黄满红, 陈东辉, 陈亮. 光合产电微生物群落构建及光照培养对其产电性能的影响[J]. 环境工程学报, 2016, 10(5): 2719-2724. doi: 10.12030/j.cjee.201412113
Zheng Wei, Huang Manhong, Chen Donghui, Chen Liang. Construction of an electrogenic microbial community including phototrophic bacterial and effect of illumination on its electrogenic activity[J]. Chinese Journal of Environmental Engineering, 2016, 10(5): 2719-2724. doi: 10.12030/j.cjee.201412113
Citation: Zheng Wei, Huang Manhong, Chen Donghui, Chen Liang. Construction of an electrogenic microbial community including phototrophic bacterial and effect of illumination on its electrogenic activity[J]. Chinese Journal of Environmental Engineering, 2016, 10(5): 2719-2724. doi: 10.12030/j.cjee.201412113

光合产电微生物群落构建及光照培养对其产电性能的影响

  • 基金项目:

    国家自然科学基金资助项目(21477018)

  • 中图分类号: X382

Construction of an electrogenic microbial community including phototrophic bacterial and effect of illumination on its electrogenic activity

  • Fund Project:
  • 摘要: 采用淡水沉积物为接种来源,培养出光合产电微生物群落。将其与藻阴极联用组建了完整的光合作用微生物燃料电池时,功率密度达到(157.5±3.1)mW/m2。采用循环伏安法及电化学阻抗谱对该群落的电化学性能进行了测试。PCR-DGGE及紫外可见吸收光谱分析显示,该群落含有 Ectothiorhodospiraceae科及Chloroflexi门不产氧光合细菌、产电菌Arcobacter butzleri、发酵细菌及其他细菌。对该群落进行长期黑暗培养或长期光照培养时,其产电性能均得到了提高,但功率密度测试显示,光照培养微生物燃料电池最大功率密度为(180.1±8.7)mW/m2,高于黑暗培养的微生物燃料电池(160.7±11.4)mW/m2。电化学测试也显示,光照培养的阳极产电性能优于黑暗培养的阳极。
  • [1] Logan B. E., Hamelers B., Rozendal R., et al. Microbial fuel cells: Methodology and technology. Environmental Science & Technology, 2006, 40(17): 5181-5192
    [2] Logan B. E., Regan J. M. Microbia fuel cells: Challenges and applications. Environmental Science & Technology, 2006, 40(17): 5172-5180
    [3] Rosenbaum M., He Z., Angenent L. T. Light energy to bioelectricity: Photosynthetic microbial fuel cells. Current Opinion in Biotechnology, 2010, 21(3): 259-264
    [4] Xiao Li, He Zhen. Applications and perspectives of phototrophic microorganisms for electricity generation from organic compounds in microbial fuel cells. Renewable and Sustainable Energy Reviews, 2014, 37: 550-559
    [5] EiMekawy A., Hegab H. M., Vanbroekhoven K., et al. Techno-productive potential of photosynthetic microbial fuel cells through different configurations. Renewable and Sustainable Energy Reviews, 2014, 39: 617-627
    [6] 杨素萍, 林志华, 崔小华, 等. 不产氧光合细菌的分类学进展. 微生物学报, 2008, 48(11): 1562-1566 Yang Suping, Lin Zhihua, Cui Xiaohua, et al. Current taxonomy of anoxygenic phototrophic bacteria: A review. Acta Microbiologica Sinica, 2008, 48(11): 1562-1566(in Chinese)
    [7] Xing Defeng, Zuo Yi, Cheng Shaoan, et al. Electricity generation by Rhodopseudomonas palustris DX-1. Environmental Science & Technology, 2008, 42(11): 4146-4151
    [8] Adessi A., Torzillo G., Baccetti E., et al. Sustained outdoor H2 production with Rhodopseudomonas palustris cultures in a 50 L tubular photobioreactor. International Journal of Hydrogen Energy, 2012, 37(10): 8840-8849
    [9] Keisuke M., Makoto Y., Akihiro F. Improving the performance of a direct photosynthetic/metabolic bio-fuel cell (DPBFC) using gene manipulated bacteria. Micromech Microeng, 2007,17:S274-S279
    [10] Badalamenti J. P., Torres C. I., Krajmalnik-Brown R. Light-responsive current generation by phototrophically enriched anode biofilms dominated by green sulfur bacteria. Biotechnology and Bioengineering, 2013, 110(4): 1020-1027
    [11] Cao Xiaoxin, Huang Xia, Boon N., et al. Electricity generation by an enriched phototrophic consortium in a microbial fuel cell. Electrochemistry Communications, 2008, 10(9): 1392-1395
    [12] 曹效鑫. 微生物燃料电池中产电菌与电极的作用机制及其应用. 北京: 清华大学博士学位论文, 2009 Cao Xiaoxin. Mechanism and application of exoelectro- gen-electrode interaction in microbial fuel cell. Beijing: Doctor Dissertation of Tsinghua University,2009(in Chinese)
    [13] 吴义诚, 肖勇, 赵峰. 一株光合细菌的分离鉴定及其产电特性.环境工程学报, 2014, 8(10): 4503-4507 Wu Yicheng, Xiao Yong, Zhao Feng. Isolation and identification of a photosynthetic bacteria and its electricity-generating characteristics. Chinese Journal of Environmental Engineering, 2014, 8(10): 4503-4507(in Chinese)
    [14] Chandra R., Venkata Subhash G., Venkata Mohan S. Mixotrophic operation of photo-bioelectrocatalytic fuel cell under anoxygenic microenvironment enhances the light dependent bioelectrogenic activity. Bioresource Technology, 2012, 109: 46-56
    [15] 王兴祖, 程翔, 孙德智, 等. 利用MFC阳极室暗发酵培养沼泽红假单胞菌. 环境工程学报, 2014, 8(10): 4492-4496 Wang Xingzu, Cheng Xiang, Sun Dezhi, et al. Dark culture of Rhodopseudomonas palustris using MFC reactor. Chinese Journal of Environmental Engineering, 2014, 8(10): 4492-4496(in Chinese)
    [16] Gouveia L., Neves C., Sebastio D., et al. Effect of light on the production of bioelectricity and added-value microalgae biomass in a photosynthetic alga microbial fuel cell. Bioresource Technology, 2014, 154: 171-177
    [17] Wu Yicheng, Wang Zejie, Zheng Yue, et al. Light intensity affects the performance of photo microbial fuel cells with Desmodesmus sp. A8 as cathodic microorganism. Applied Energy, 2014, 116: 86-90
    [18] 刘如林, 刁虎欣, 梁风来. 光合细菌及其应用. 北京: 中国农业科学技术出版社, 1991
    [19] Zhao Guang, Ma Fang, Li Wei, et al. Electricity generation from cattle dung using microbial fuel cell technology during anaerobic acidogenesis and the development of microbial populations. Waste Management, 2012, 32(9): 1651-1658
    [20] Ishii S., Shimoyama T., Hotta Y., et al. Characterization of a filamentous biofilm community established in a cellulose-fed microbial fuel cell. BMC Microbiology, 2008, 8: 6
    [21] Fedorovich V., Knighton M. C., Pagaling E., et al. Novel electrochemically active bacterium phylogenetically related to Arcobacter butzleri, isolated from a microbial fuel cell. Applied and Environmental Microbiology, 2009, 75(23): 7326-7334
    [22] Heylen K., Lebbe L., De Vos P. Acidovorax caeni sp. nov., a denitrifying species with genetically diverse isolates from activated sludge. International Journal of Systematic and Evolutionary Microbiology, 2008, 58: 73-77
  • 加载中
计量
  • 文章访问数:  1766
  • HTML全文浏览数:  1386
  • PDF下载数:  835
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-01-14
  • 刊出日期:  2016-06-03
郑伟, 黄满红, 陈东辉, 陈亮. 光合产电微生物群落构建及光照培养对其产电性能的影响[J]. 环境工程学报, 2016, 10(5): 2719-2724. doi: 10.12030/j.cjee.201412113
引用本文: 郑伟, 黄满红, 陈东辉, 陈亮. 光合产电微生物群落构建及光照培养对其产电性能的影响[J]. 环境工程学报, 2016, 10(5): 2719-2724. doi: 10.12030/j.cjee.201412113
Zheng Wei, Huang Manhong, Chen Donghui, Chen Liang. Construction of an electrogenic microbial community including phototrophic bacterial and effect of illumination on its electrogenic activity[J]. Chinese Journal of Environmental Engineering, 2016, 10(5): 2719-2724. doi: 10.12030/j.cjee.201412113
Citation: Zheng Wei, Huang Manhong, Chen Donghui, Chen Liang. Construction of an electrogenic microbial community including phototrophic bacterial and effect of illumination on its electrogenic activity[J]. Chinese Journal of Environmental Engineering, 2016, 10(5): 2719-2724. doi: 10.12030/j.cjee.201412113

光合产电微生物群落构建及光照培养对其产电性能的影响

  • 1. 东华大学环境科学与工程学院, 国家环境保护纺织污染防治工程技术中心, 上海 201620
基金项目:

国家自然科学基金资助项目(21477018)

摘要: 采用淡水沉积物为接种来源,培养出光合产电微生物群落。将其与藻阴极联用组建了完整的光合作用微生物燃料电池时,功率密度达到(157.5±3.1)mW/m2。采用循环伏安法及电化学阻抗谱对该群落的电化学性能进行了测试。PCR-DGGE及紫外可见吸收光谱分析显示,该群落含有 Ectothiorhodospiraceae科及Chloroflexi门不产氧光合细菌、产电菌Arcobacter butzleri、发酵细菌及其他细菌。对该群落进行长期黑暗培养或长期光照培养时,其产电性能均得到了提高,但功率密度测试显示,光照培养微生物燃料电池最大功率密度为(180.1±8.7)mW/m2,高于黑暗培养的微生物燃料电池(160.7±11.4)mW/m2。电化学测试也显示,光照培养的阳极产电性能优于黑暗培养的阳极。

English Abstract

参考文献 (22)

返回顶部

目录

/

返回文章
返回