双金属系统还原脱溴降解多溴联苯醚(PBDEs)研究进展

薛南冬, 陈宣宇, 刘寒冰. 双金属系统还原脱溴降解多溴联苯醚(PBDEs)研究进展[J]. 环境工程学报, 2016, 10(5): 2157-2167. doi: 10.12030/j.cjee.201412097
引用本文: 薛南冬, 陈宣宇, 刘寒冰. 双金属系统还原脱溴降解多溴联苯醚(PBDEs)研究进展[J]. 环境工程学报, 2016, 10(5): 2157-2167. doi: 10.12030/j.cjee.201412097
Xue Nandong, Chen Xuanyu, Liu Hanbing. Progress on bimetallic system debrominated reduction technology for degradation of polybrominated diphenyl ethers[J]. Chinese Journal of Environmental Engineering, 2016, 10(5): 2157-2167. doi: 10.12030/j.cjee.201412097
Citation: Xue Nandong, Chen Xuanyu, Liu Hanbing. Progress on bimetallic system debrominated reduction technology for degradation of polybrominated diphenyl ethers[J]. Chinese Journal of Environmental Engineering, 2016, 10(5): 2157-2167. doi: 10.12030/j.cjee.201412097

双金属系统还原脱溴降解多溴联苯醚(PBDEs)研究进展

  • 基金项目:

    国家自然科学基金资助项目(41571481)

    国家公益性行业科研专项 (201509034)

Progress on bimetallic system debrominated reduction technology for degradation of polybrominated diphenyl ethers

  • Fund Project:
  • 摘要: 多溴联苯醚(PBDEs)是一类新型持久性有机污染物。双金属系统催化还原脱溴技术作为一种处理环境中PBDEs的方法,具有出较好的应用前景。综述了双金属系统催化还原PBDEs脱溴的研究进展,详细阐述了双金属系统催化PBDEs脱溴降解的机理、途径以及不同双金属系统的脱溴效能。提出了利用双金属系统降解PBDEs存在的问题和发展前景。
  • [1] Shin J. H., Boo H. O., Bang E., et al. Development of a cleanup method for polybrominated diphenyl ether (PBDE) in fish by freezing-lipid filtration. European Food Research and Technology, 2012, 235(2): 295-301
    [2] Haave M., Folven K. I., Carroll T., et al. Cerebral gene expression and neurobehavioural development after perinatal exposure to an environmentally relevant polybrominated diphenylether (BDE47). Cell Biology and Toxicology, 2011, 27(5): 343-361
    [3] Darnerud P. O., Wong J., Bergman Å., et al. Common viral infection affects pentabrominated diphenyl ether (PBDE) distribution and metabolic and hormonal activities in mice. Toxicology, 2005, 210(2-3): 159-167
    [4] Routti H., Letcher R. J., Chu S. G., et al. Polybrominated diphenyl ethers and their hydroxylated analogues in ringed seals (Phoca hispida) from Svalbard and the Baltic sea. Environmental Science & Technology, 2009, 43(10): 3494-3499
    [5] Leung A. O. W., Luksemburg W. J., Wong A. S., et al. Spatial distribution of polybrominated diphenyl ethers and polychlorinated dibenzo-p-dioxins and dibenzofurans in soil and combusted residue at Guiyu, an electronic waste recycling site in southeast China. Environmental Science & Technology, 2007, 41(8): 2730-2737
    [6] Darnerud P. O., Risberg S. Tissue localisation of tetra- and pentabromodiphenyl ether congeners (BDE-47, -85 and -99) in perinatal and adult C57BL mice. Chemosphere, 2006, 62(3): 484-493
    [7] Branchi I., Capone F., Vitalone A., et al. Early developmental exposure to BDE 99 or aroclor 1254 affects neurobehavioural profile: Interference from the administration route. Neuro Toxicology, 2005, 26(2): 183-192
    [8] Li Fei, Xie Qing, Li Xuehau, et al. Hormone activity of hydroxylated polybrominated diphenyl ethers on human thyroid receptor-β: In vitro and in silico investigations. Environmental Health Perspectives, 2012, 118(5): 602-606
    [9] Wang Xingbao, Wang Yong, Chen Jinwen, et al. Computational toxicological investigation on the mechanism and pathways of xenobiotics metabolized by cytochrome P450: A case of BDE-47. Environmental Science & Technology, 2012, 46(9): 5126-5133
    [10] 薛南冬, 李发生. 持久性有机污染物(POPs)污染场地风险控制与环境修复. 北京: 科学出版社, 2011: 5
    [11] Booij K., Zegers B. N., Boon J. P. Levels of some polybrominated diphenyl ether (PBDE) flame retardants along the Dutch coast as derived from their accumulation in SPMDs and blue mussels (Mytilus edulis). Chemosphere, 2002, 46(5): 683-688
    [12] Wurl O., Lam P. K. S., Obbard J. P. Occurrence and distribution of polybrominated diphenyl ethers (PBDEs) in the dissolved and suspended phases of the sea-surface microlayer and seawater in Hong Kong, China. Chemosphere, 2006, 65(9): 1660-1666
    [13] Oros D. R., Hoover D., Rodigari F., et al. Levels and distribution of polybrominated diphenyl ethers in water, surface sediments, and bivalves from the San Francisco Estuary. Environmental Science & Technology, 2005, 39(1): 33-41
    [14] De Boer J., Wester P. G., van der Horst A., et al. Polybrominated diphenyl ethers in influents, suspended particulate matter, sediments, sewage treatment plant and effluents and biota from the Netherlands. Environmental Pollution, 2003, 122(1): 63-74
    [15] Hale R. C., La Gardia M. J., Harvey E., et al. Brominated flame retardant concentrations and trends in abiotic media. Chemosphere, 2006, 64(2): 181-186
    [16] Chen Chang'er, Zhao Hongxia, Chen Jingwen, et al. Polybrominated diphenyl ethers in soils of the modern Yellow River Delta, China: Occurrence, distribution and inventory. Chemosphere, 2012, 88(7): 791-797
    [17] 陈社军, 麦碧娴, 曾永平, 等. 珠江三角洲及南海北部海域表层沉积物中多溴联苯醚的分布特征. 环境科学学报, 2005, 25(9): 1265-1271 Chen Shejun, Mai Bixian, Zeng Yongping, et al. Polybrominated diphenyl ethers (PBDEs) in surficial sediments of the Pearl River Delta and adjacent South China Sea. Acta Scientiae Circumstantiae, 2005, 25(9): 1265-1271(in Chinese)
    [18] Song Wenlu, Ford J. C., Li An, et al. Polybrominated diphenyl ethers in the sediments of the Great Lakes. 1. Lake Superior. Environmental Science & Technology, 2004, 38(12): 3286-3293
    [19] Eljarrat E., De La Cal A., Raldua D., et al. Occurrence and bioavailability of polybrominated diphenyl ethers and hexabromocyclododecane in sediment and fish from the Cinca River, a tributary of the Ebro River (Spain). Environmental Science & Technology, 2004, 38(9): 2603-2608
    [20] Eljarrat E., Labandeira A., Marsh G. Decabrominated diphenyl ether in river fish and sediment samples collected downstream an industrial park. Chemosphere, 2007, 69(8): 1278-1286
    [21] Moon H. B., Kannan K., Choi M., et al. Polybrominated diphenyl ethers (PBDEs) in marine sediments from industrialized bays of Korea. Marine Pollution Bulletin, 2007, 54(9): 1402-1412
    [22] Jin Jun, Liu Weizhi, Wang Ying, et al. Levels and distribution of polybrominated diphenyl ethers in plant, shellfish and sediment samples from Laizhou Bay in China. Chemosphere, 2008, 71(6): 1043-1050
    [23] Alaee M., Cannon C., Muir D., et al. Spatial distribution and seasonal variation of PBDEs in Arctic and Great Lakes air. Organohalogen Compounds, 2001, 52: 26-29
    [24] Wang Yawei, Jiang Guibin, Lam P. K. S., et al. Polybrominated diphenyl ether in the East Asian environment: A critical review. Environment International, 2007, 33(7): 963-973
    [25] Law R. J., Allchin C. R., de Boer J., et al. Levels and trends of brominated flame retardants in the European environment. Chemosphere, 2006, 64(2): 187-208
    [26] Bohlin P., Jones K. C., Tovalin H., et al. Observations on persistent organic pollutants in indoor and outdoor air using passive polyurethane foam samplers. Atmospheric Environment, 2008, 42(31): 7234-7241
    [27] Strandberg B., Dodedr N. G., Basu I., et al. Concentrations and spatial variations of polybrominated diphenyl ethers and other organohalogen compounds in Great Lakes air. Environmental Science & Technology, 2001, 35(6): 1078-1083
    [28] Hirai T., Fujimine Y., Watanabe S., et al. Distribution of polybrominated diphenyl ethers in Japanese autopsy tissue and body fluid samples. Environmental Science and Pollution Research, 2012, 19(8): 3538-3546
    [29] Johnson-Restrepo B., Kannan K., Addink R., et al. Polybrominated diphenyl ethers and polychlorinated biphenyls in a marine foodweb of coastal Florida. Environmental Science & Technology, 2005, 39(21): 8243-8250
    [30] Endo S., Mewburn B., Escher B. I. Liposome and protein-water partitioning of polybrominated diphenyl ethers (PBDEs). Chemosphere, 2013, 90(2): 505-511
    [31] Wolkers H., van Bavel B., Derocher A. E., et al. Congener-specific accumulation and food chain transfer of polybrominated diphenyl ethers in two arctic food chains. Environmental Science & Technology, 2004, 38(6): 1667-1674
    [32] Ikonomou M. G., Rayne S., Addison R. F. Exponential increases of the brominated flame retardants, polybrominated diphenyl ethers, in the Canadian Arctic from 1981 to 2000. Environmental Science & Technology, 2002, 36(9): 1886-1892
    [33] Betts K. S. Flame-proofing the Arctic? Environmental Science & Technology, 2002, 36(9): 188A-192A
    [34] Akutsu K., Kitagawa M., Nakazawa H., et al. Time-trend (1973-2000) of polybrominated diphenyl ethers in Japanese mother's milk. Chemosphere, 2003, 53(6): 645-654
    [35] Corsolini S., Covaci A., Ademollo N., et al. Occurrence of organochlorine pesticides (OCPs) and their enantiomeric signatures, and concentrations of polybrominated diphenyl ethers (PBDEs) in the Adélie penguin food web, Antarctica. Environmental Pollution, 2006, 140(2): 371-382
    [36] Wang Yawei, Wang T., Li An, et al. Selection of bioindicators of polybrominated diphenyl ethers, polychlorinated biphenyls, and organochlorine pesticides in mollusks in the Chinese Bohai Sea. Environmental Science & Technology, 2008, 42(19): 7159-7165
    [37] Li Yingming, Jiang Guibin, Wang Yawei, et al. Concentrations, profiles and gas-particle partitioning of PCDD/Fs, PCBs and PBDEs in the ambient air of an E-waste dismantling area, southeast China. Chinese Science Bulletin, 2008, 53(4): 521-528
    [38] Hundt K., Jonas U., Hammer E., et al. Transformation of diphenyl ethers by Trametes versicolor and characterization of ring cleavage products. Biodegradation, 1999, 10(4): 279-286
    [39] Rayne S., Ikonomou M. G., Whale M. D. Anaerobic microbial and photochemical degradation of 4, 4'-dibromodiphenyl ether. Water Research, 2003, 37(3): 551-560
    [40] Eriksson J., Green N., Marsh G., et al. Photochemical decomposition of 15 polybrominated diphenyl ether congeners in methanol/water. Environmental Science & Technology, 2004, 38(11): 3119-3125
    [41] Mas S., De Juan A., Lacorte S., et al. Photodegradation study of decabromodiphenyl ether by UV spectrophotometry and a hybrid hard- and soft-modelling approach. Analytica Chimica Acta, 2008, 618(1): 18-28
    [42] Konstantinov A., Bejan D., Bunce N. J., et al. Electrolytic debromination of PBDEs in DE-83TM technical decabromodiphenyl ether. Chemosphere, 2008, 72(8): 1159-1162
    [43] Grittini C., Malcomson M., Fernando Q., et al. Rapid dechlorination of polychlorinated biphenyls on the surface of a Pd/Fe bimetallic system. Environmental Science & Technology, 1995,29(11): 2898-2900
    [44] Gillham R. W., O'Hannesin S. F. Enhanced degradation of halogenated aliphatics by zero-valent iron. Ground Water, 1994, 32(6): 958-967
    [45] Johnson T. J., Fish W., Gorby Y. A., et al. Degradation of carbon tetrachloride by iron metal: Complexation effects on the oxide surface. Journal of Contaminant Hydrology, 1998, 29(4): 379-398
    [46] Matheson J. L., Tratnyek P. G. Reductive dehalogenation of chlorinated methanes by iron metal. Environmental Science & Technology, 1994, 28(12): 2045-2053
    [47] Luckey F., Fowler B., Litten S. Establishing baseline levels of polybrominated diphenyl ethers in Lake Ontario surface waters//Proceedings of the Second International Workshop on Brominated Flame Retardants. Stockholm, Sweden: BFR, 2001
    [48] Wong A., Lei Yingduan, Alaee A., et al. Vapor pressures of the polybrominated diphenyl ethers. Journal of Chemical & Engineering Date, 2001, 46(2): 239-242
    [49] Dodder N. G., Strandberg B., Hites R. A. Concentrations and spatial variations of polybrominated diphenyl ethers in fish and air from the northeastern United States. Organohalogen Compounds, 2000, 47: 69-72
    [50] Arias P. Brominated diphenyloxides as flame retardants. Bromine based chemicals. Draft report of OECD, Brussels, 1992
    [51] Nose K., Hashimoto S., Takahashi S., et al. Degradation pathways of decabromodiphenyl ether during hydrothermal treatment. Chemosphere, 2007, 68(1): 120-125
    [52] Robrock K. R., Korytár P., Alvarez-Cohen L. Pathways for the anaerobic microbial debromination of polybrominated diphenyl ethers. Environmental Science & Technology, 2008, 42(8): 2845-2852
    [53] He Jianzhong, Robrock K. R., Alvarez-Cohen L. Microbial reductive debromination of polybrominated diphenyl ethers (PBDEs). Environmental Science & Technology, 2006, 40(14): 4429-4434
    [54] Gerecke A. C., Giger W., Hartmann P. C., et al. Anaerobic degradation of brominated flame retardants in sewage sludge. Chemosphere, 2006, 64(2): 311-317
    [55] 张梅, 林匡飞, 刘莉莉, 等. 光源和溶剂对十溴联苯醚光降解的影响. 环境污染与防治, 2009, 31(1): 26-30 Zhang Mei, Lin Kuangfei, Liu Lili, et al. Effects of light sources and solvents on the photodegradation of decabromodiphenyl ether. Environmental Pollution & Control, 2009, 31(1): 26-30(in Chinese)
    [56] Sánchez-Prado L., González-Barreiro C., Lores M., et al. Photochemical studies of a polybrominated diphenyl ethers (PBDEs) technical mixture by solid phase microextraction (SPME). Chemosphere, 2005, 60(7): 922-928
    [57] Olsman H., van Bavel B., Kalbin G., et al. Formation of dioxin-like compounds as photoproducts of decarbominated diphenyl ether (deBDE) during UV-irradiation. Organohalogen Compounds, 2002, 58: 41-44
    [58] Hagberg J., Olsman H., van Bavel B., et al. Chemical and toxicological characterisation of PBDFs from photolytic decomposition of decaBDE in toluene. Environment International, 2006, 32(7): 851-857
    [59] 赵世岩. 碳纳米管修饰电极对PCBs和PBDEs的电催化还原脱卤. 大连: 大连理工大学硕士学位论文, 2009 Zhao Shiyan. Electrocatalytic reductive dehalogenation of polychlorinated biphenyls and polybrominated diphenyl ethers by modified carbon nanotubes electrode. Dalian: Master Dissertation of Dalian University of Technology, 2009(in Chinese)
    [60] Bonin P. M. L., Edwards P., Bejan D., et al. Catalytic and electrocatalytic hydrogenolysis of brominated diphenyl ethers. Chemosphere, 2005, 58(7): 961-967
    [61] 王世杰, 谷庆宝, 杜平, 等. 零价铁表面积对泥浆反应体系中硝基苯降解行为的影响. 环境科学研究, 2007, 20(6): 106-109 Wang Shijie, Gu Qingbao, Du Pin, et al. Effects of iron surface area on reduction of nitrobenzene-contaminated sediment in slurry reaction system. Environmental Sciences Research, 2007, 20(6): 106-109(in Chinese)
    [62] Cong Xin, Xue Nandong, Wang Shijie, et al. Reductive dechlorination of organochlorine pesticides in soils from an abandoned manufacturing facility by zero-valent iron. Science of the Total Environment, 2010, 408(16): 3418-3423
    [63] Keum Y. S., Li Q. X. Reductive debromination of polybrominated diphenyl ethers by zerovalent iron. Environmental Science & Technology, 2005, 39(7): 2280-2286
    [64] Carvalho-Knighton K., Talalaj L., Devor R. PBDE degradation with Zero-valent bimetallic systems//Environmental Applications of Nanoscale and Microscale Reactive Metal Particles. Washington, DC: American Chemical Society, 2009
    [65] Fang Zhanqiang, Qiu Xinhong, Chen Jinhong, et al. Debromination of polybrominated diphenyl ethers by Ni/Fe bimetallic nanoparticles: Influencing factors, kinetics, and mechanism. Journal of Hazardous Materials, 2011, 185(2-3): 958-969
    [66] Shih Y. H., Tai Y. T. Reaction of decabrominated diphenyl ether by zerovalent iron nanoparticles. Chemosphere, 2010, 78(10): 1200-1206
    [67] Feng Jing, Lim T. T. Pathways and kinetics of carbon tetrachloride and chloroform reductions by nano-scale Fe and Fe/Ni particles: Comparison with commercial micro-scale Fe and Zn. Chemosphere, 2005, 59(9): 1267-1277
    [68] Xu Xinhua, Zhou Hongyi, He Ping, et al. Catalytic dechlorination kinetics of p-dichlorobenzene over Pd/Fe catalysts. Chemosphere, 2005, 58(8): 1135-1140
    [69] Lin C. J., Lo S. L., Liou Y. H. Dechlorination of trichloroethylene in aqueous solution by noble metal-modified iron. Journal of Hazardous Materials, 2004, 116(3): 219-228
    [70] Liu Yihui, Yang Fenglin, Chen Jingwen, et al. Linear free energy relationships for dechlorination of aromatic chlorides by Pd/Fe. Chemosphere, 2003, 50(10): 1275-1279
    [71] 程荣, 王建龙, 张伟贤. 纳米金属铁降解有机卤化物的研究进展. 化学进展, 2006, 18(1): 93-99 Cheng Rong, Wang Jianlong, Zhang Weixian. The research progress on degradation of halogenated organic compounds by nano iron. Progress in Chemistry, 2006, 18(1): 93-99(in Chinese)
    [72] Lien H. L., Zhang Weixian. Hydrodechlorination of chlorinated ethanes by nanoscale Pd/Fe bimetallic particles. Journal of Environmental Engineering, 2005, 131(1): 4-10
    [73] Lien H. L., Zhang Weixian. Transformation of chlorinated methanes by nanoscale iron particles. Journal of Environmental Engineering, 1999, 125(11): 1042-1047
    [74] Choe S., Lee S. H., Chang Y. Y., et al. Rapid reductive destruction of hazardous organic compounds by nanoscale Fe0. Chemosphere, 2001, 42(2): 367-372
    [75] Golubina E. V., Lokteva E. S., Lazareva T. S., et al. Hydrodechlorination of tetrachloromethane in the vapor phase in the presence of Pd-Fe/sibunit catalysts. Kinetics and Catalysis, 2004, 45(2): 183-188
    [76] Morales J., Hutcheson R., Cheng I. F. Dechlorination of chlorinated phenols by catalyzed and uncatalyzed Fe(0) and Mg(0) particles. Journal of Hazardous Materials, 2002, 90(1): 97-108
    [77] Jovanovic G. N., Žnidaršic Plazl P., Sakrittichai P., et al. Dechlorination of p-chlorophenol in a microreactor with bimetallic Pd/Fe catalyst. Industrial & Engineering Chemistry Research, 2005, 44(14): 5099-5106
    [78] Liu Yihui, Yang Fenglin, Yue P. F., et al. Catalytic dechlorination of chlorophenols in water by palladium/iron. Water Research, 2001, 35(8): 1887-1890
    [79] Wei Jianjun, Xu Xinhua, Liu Yong, et al. Catalytic hydrodechlorination of 2,4-dichlorophenol over nanoscale Pd/Fe: Reaction pathway and some experimental parameters. Water Research, 2006, 40(2): 348-354
    [80] Patel U. D., Suresh S. Dechlorination of chlorophenols using magnesium-palladium bimetallic system. Journal of Hazardous Materials, 2007, 147(1-2): 431-438
    [81] Zhang Weixian, Wang Chuanbao, Lien H. L. Treatment of chlorinated organic contaminants with nanoscale bimetallic particles. Catalysis Today, 1998, 40(4): 387-395
    [82] Li Fang, Vipulanandan C., Mohanty K. K. Microemulsion and solution approaches to nanoparticle iron production for degradation of trichloroethylene. Colloids and Surfaces A, 2003, 223(1-3): 103-112
    [83] Schrick B., Blough J. L., Jones A. D., et al. Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel-iron nanoparticles. Chemistry of Materials, 2002, 14(12): 5140-5147
    [84] Wang Chuanbao, Zhang Weixian. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environmental Science & Technology, 1997, 31(7): 2154-2156
    [85] Agarwal S., Al-Abed S. R., Dionysiou D. D. Enhanced corrosion-based Pd/Mg bimetallic systems for dechlorination of PCBs. Environmental Science & Technology, 2007, 41(10): 3722-3727
    [86] Choi H., Al-Abed S. R., Agarwal S., et al. Synthesis of reactive nano-Fe/Pd bimetallic system-impregnated activated carbon for the simultaneous adsorption and dechlorination of PCBs. Chemistry of Materials, 2008, 20(11): 3649-3655
    [87] Yak H. K., Lang Qingyong, Wai C. M. Relative resistance of positional isomers of polychlorinated biphenyls toward reductive dechlorination by zerovalent iron in subcritical water. Environmental Science & Technology, 2000, 34(13): 2792-2798
    [88] Qiu Xinhong, Fang Zhanqiang, Liang Bin, et al. Degradation of decabromodiphenyl ether by nano zero-valent iron immobilized in mesoporous silica microspheres. Journal of Hazardous Materials, 2011, 193: 70-81
    [89] Peng Y. H., Chen K. C., Shih Y. H. Adsorption and sequential degradation of polybrominated diphenyl ethers with zerovalent iron. Journal of Hazardous Materials, 2013, 260: 844-850
    [90] Hu Jiwei, Zhuang Yuan, Luo Jin, et al. A theoretical study on reductive debromination of polybrominated diphenyl ethers. International Journal of Molecular Sciences, 2012, 13(7): 9332-9342
    [91] Yu Kai, Gu Cheng, Boyd S. A., et al. Rapid and extensive debromination of decabromodiphenyl ether by smectite clay-templated subnanoscale zero-valent iron. Environmental Science & Technology, 2012, 46(16): 8969-8975
    [92] Zhuang Yuan, Ahn S., Luthy R. G. Debromination of polybrominated diphenyl ethers by nanoscale zerovalent iron: pathways, kinetics, and reactivity. Environmental Science & Technology, 2010, 44(21): 8236-8242
    [93] Pfeifer F., Schacht S., Klein J., et al. Degradation of diphenylether by Pseudomonas cepacia. Archives of Microbiology, 1989, 152(6): 515-519
    [94] Schmidt S., Wittich R. M., Erdmann D., et al. Biodegradation of diphenyl ether and its monohalogenated derivatives by Sphingomonas sp. strain SS3. Applied and Environmental Microbiology, 1992, 58(9): 2744-2750
    [95] Schmidt S., Fortnagel P., Wittich R. M. Biodegradation and transformation of 4,4'-and 2,4-dihalodiphenyl ethers by Sphingomonas sp. strain SS3. Applied and Environmental Microbiology, 1993, 59(11): 3931-3933
    [96] Kajiwara N., Noma Y., Takigami H. Photolytic debromination of deca-BDE and DBDPE in flame-retarded plastics. Organohalogen Compounds, 2007, 69: 924-927
    [97] Watanabe I., Tatsukawa R. Formation of brominated dibenzofurans from the photolysis of flame retardant decabromobiphenyl ether in hexane solution by UV and sun light. Bulletin of Environmental Contamination and Toxicology, 1987, 39(6): 953-959
    [98] 李长芳, 胡勇有, 黄国富. 纳米Pd/Fe催化甲醇/水中2, 2', 4, 4'-四溴联苯醚(BDE-47)还原脱溴. 环境科学学报, 2012, 32(10): 2353-2359 Li Changfang, Hu Yongyou, Huang Guofu. Catalytic debromination of 2,2', 4,4'-Tetrabromodiphenylether ( BDE-47) by Pd/Fe nanoparticles in methanol/water. Acta Scientiae Circumstantiae, 2012, 32(10): 2353-2359(in Chinese)
    [99] 全燮, 刘会娟, 杨凤林, 等. 二元金属体系对水中多氯有机物的催化还原脱氯特性. 中国环境科学, 1998, 18(4): 333-336 Quan Xie, Liu Huijuan, Yang Fenglin, et al. Dechlorination of three polychlorinated hydrocarbons in water using bimetallic system. China Environmental Science, 1998, 18(4): 333-336(in Chinese)
    [100] Cheng I. F., Fernando Q., Korte N. Electrochemical dechlorination of 4-chlorophenol to phenol. Environmental Science & Technology, 1997, 31(4): 1074-1078
    [101] 曹声春, 胡艾希, 尹笃林. 催化原理及其工业应用技术. 长沙: 湖南大学出版社, 2001
    [102] Korte N. E., Zutman J. L., Schlosser R. M., et al. Field application of palladized iron for the dechlorination of trichloroethene. Waste Management, 2000, 20(8): 687-694
    [103] Cwiertny D. M., Bransfield S. J., Livi K. J., et al. Exploring the influence of granular iron additives on 1,1,1-trichloroethane reduction. Environmental Science & Technology, 2006, 40(21): 6837-6843
    [104] Luo Si, Yang Shaogui, Sun Cheng, et al. Improved debromination of polybrominated diphenyl ethers by bimetallic iron-silver nanoparticles coupled with microwave energy. Science of the Total Environment, 2012, 429: 300-308
    [105] Li An, Tai Chao, Zhao Zongshan, et al. Debromination of decabrominated diphenyl ether by resin-bound iron nanoparticles. Environmental Science & Technology, 2007, 41(19): 6841-6846
    [106] 梁贺升, 陈少瑾. 纳米零价铁脱溴十溴联苯醚(BDE-209)的研究. 韩山师范学院学报, 2010, 31(3): 70-73 Liang Hesheng, Chen Shaojin. Debromination decabromodiphenyl (BDE-209)by nano zero-valent iron. Journal of Hanshan Normal University, 2010, 31(3): 70-73(in Chinese)
    [107] 明磊强, 何义亮, 章敏, 等. 零价铁降解多溴联苯醚影响条件的研究. 净水技术, 2010, 29(2): 49-52 Ming Leiqiang, He Yiliang, Zhang Min, et al. Studies on effect conditions for removal of polybrominated diphenyl ethers by zero valent iron. Water Purification Technology, 2010, 29(2): 49-52(in Chinese)
  • 加载中
计量
  • 文章访问数:  3327
  • HTML全文浏览数:  2770
  • PDF下载数:  1611
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-02-14
  • 刊出日期:  2016-06-03
薛南冬, 陈宣宇, 刘寒冰. 双金属系统还原脱溴降解多溴联苯醚(PBDEs)研究进展[J]. 环境工程学报, 2016, 10(5): 2157-2167. doi: 10.12030/j.cjee.201412097
引用本文: 薛南冬, 陈宣宇, 刘寒冰. 双金属系统还原脱溴降解多溴联苯醚(PBDEs)研究进展[J]. 环境工程学报, 2016, 10(5): 2157-2167. doi: 10.12030/j.cjee.201412097
Xue Nandong, Chen Xuanyu, Liu Hanbing. Progress on bimetallic system debrominated reduction technology for degradation of polybrominated diphenyl ethers[J]. Chinese Journal of Environmental Engineering, 2016, 10(5): 2157-2167. doi: 10.12030/j.cjee.201412097
Citation: Xue Nandong, Chen Xuanyu, Liu Hanbing. Progress on bimetallic system debrominated reduction technology for degradation of polybrominated diphenyl ethers[J]. Chinese Journal of Environmental Engineering, 2016, 10(5): 2157-2167. doi: 10.12030/j.cjee.201412097

双金属系统还原脱溴降解多溴联苯醚(PBDEs)研究进展

  • 1. 中国环境科学研究院, 环境基准与风险评估国家重点实验室, 北京 100012
基金项目:

国家自然科学基金资助项目(41571481)

国家公益性行业科研专项 (201509034)

摘要: 多溴联苯醚(PBDEs)是一类新型持久性有机污染物。双金属系统催化还原脱溴技术作为一种处理环境中PBDEs的方法,具有出较好的应用前景。综述了双金属系统催化还原PBDEs脱溴的研究进展,详细阐述了双金属系统催化PBDEs脱溴降解的机理、途径以及不同双金属系统的脱溴效能。提出了利用双金属系统降解PBDEs存在的问题和发展前景。

English Abstract

参考文献 (107)

返回顶部

目录

/

返回文章
返回