白洋淀沉水植物腐解溶解性有机物与重金属的相互作用

袁冬海, 崔骏, 洪志强, 闻丽, 王京刚, 马文林, 李俊奇. 白洋淀沉水植物腐解溶解性有机物与重金属的相互作用[J]. 环境工程学报, 2016, 10(5): 2184-2192. doi: 10.12030/j.cjee.201408012
引用本文: 袁冬海, 崔骏, 洪志强, 闻丽, 王京刚, 马文林, 李俊奇. 白洋淀沉水植物腐解溶解性有机物与重金属的相互作用[J]. 环境工程学报, 2016, 10(5): 2184-2192. doi: 10.12030/j.cjee.201408012
Yuan Donghai, Cui Jun, Hong Zhiqiang, Wen Li, Wang Jinggang, Ma Wenlin, Li Junqi. Interaction between dissolved organic matter released by macrophyte decomposition and heavy metal in Lake Baiyangdian[J]. Chinese Journal of Environmental Engineering, 2016, 10(5): 2184-2192. doi: 10.12030/j.cjee.201408012
Citation: Yuan Donghai, Cui Jun, Hong Zhiqiang, Wen Li, Wang Jinggang, Ma Wenlin, Li Junqi. Interaction between dissolved organic matter released by macrophyte decomposition and heavy metal in Lake Baiyangdian[J]. Chinese Journal of Environmental Engineering, 2016, 10(5): 2184-2192. doi: 10.12030/j.cjee.201408012

白洋淀沉水植物腐解溶解性有机物与重金属的相互作用

  • 基金项目:

    国家自然科学基金资助项目(51209003)

    国家科技支撑计划项目(2012BAJ21B08)

  • 中图分类号: X703

Interaction between dissolved organic matter released by macrophyte decomposition and heavy metal in Lake Baiyangdian

  • Fund Project:
  • 摘要: 针对白洋淀秋冬季节水生植物腐解释放大量溶解性有机物(DOM)的问题,利用紫外可见光谱(UV-Vis)和激发发射光谱(EEMs)结合平行因子分析法(PARAFAC)对DOM样品进行表征和分离。实验结果表明,PARAFAC共分离出4种组分(C1、C2、C3和C4),类腐殖酸组分C1和C2、类蛋白组分C3、含有类蛋白组分和类富里酸组分共同组成的C4。此外,对样品进行荧光淬灭滴定实验来研究DOM与重金属(Cu (Ⅱ)和Cd (Ⅱ))的相互作用,发现Cu (Ⅱ)对所有组分都存在明显的淬灭效果,并可以较好地拟合出络合常数(lgK),而Cd (Ⅱ)只与C4有较好的络合效果,这是由于C4中的类富里酸成分所造成的。研究进一步发现,样品U2中类蛋白组分C3和C4对重金属的淬灭效果比样品U0的类蛋白组分明显。这是由于样品U2中所添加的植物量较多,而植物腐解所释放的主要成分为类蛋白物质,有助于增强类蛋白组分的络合能力。研究结果可为科学评价水生植物腐解释放DOM对水体中重金属的迁移转化提供依据。
  • [1] Sooknah R. D., Wilkie A. C. Nutrient removal by floating aquatic macrophytes cultured in anaerobically digested flushed dairy manure wastewater. Ecological Engineering, 2004, 22(1): 27-42
    [2] Dittrich M., Chesnyuk A., Gudimov A., et al. Phosphorus retention in a mesotrophic lake under transient loading conditions: Insights from a sediment phosphorus binding form study. Water Research, 2013, 47(3): 1433-1447
    [3] Wolfe A. P., Kaushal S. S., Fulton J. R., et al. Spectrofluorescence of sediment humic substances and historical changes of lacustrine organic matter provenance in response to atmospheric nutrient enrichment. Environmental Science & Technology, 2002, 36(15): 3217-3223
    [4] Wu Jun, Zhang Hua, Yao Qisheng, et al. Toward understanding the role of individual fluorescent components in DOM-metal binding. Journal of Hazardous Materials, 2012, 215-216: 294-301
    [5] Guo Xujing, Yuan Donghai, Li Qiang, et al. Spectroscopic techniques for quantitative characterization of Cu (II) and Hg (II) complexation by dissolved organic matter from lake sediment in arid and semi-arid region. Ecotoxicology and Environmental Safety, 2012, 85: 144-150
    [6] Yamashita Y., Jaffé R. Characterizing the interactions between trace metals and dissolved organic matter using excitation-emission matrix and parallel factor analysis. Environmental Science & Technology, 2008, 42(19): 7374-7379
    [7] Plaza C., Brunetti G., Senesi N., et al. Molecular and quantitative analysis of metal ion binding to humic acids from sewage sludge and sludge-amended soils by fluorescence spectroscopy. Environmental Science & Technology, 2006, 40(3): 917-923
    [8] 石陶然, 张远, 于涛, 等. 滇池沉积物不同分子质量溶解性有机质分布及其与Cu和Pb的相互作用. 环境科学研究, 2013, 26(2): 137-144 Shi Taoran, Zhang Yuan, Yu Tao, et al. Distribution of different molecular weight fractions of dissolved organic matters and their complexation with Cu and Pb in the sediment from Dianchi Lake, China. Research of Environmental Sciences, 2013, 26(2): 137-144(in Chinese)
    [9] Wu Jun, Zhang Hua, He Pinjing, et al. Insight into the heavy metal binding potential of dissolved organic matter in MSW leachate using EEM quenching combined with PARAFAC analysis. Water Research, 2001, 45(4): 1711-1719
    [10] Ryan D. K., Weber J. H. Fluorescence quenching titration for determination of complexing capacities and stability constants of fulvic acid. Analytical Chemistry, 1982, 54(6): 986-990
    [11] Bai Y. C., Wu F. C., Liu C. Q., et al. Ultraviolet absorbance titration for determining stability constants of humic substances with Cu(II) and Hg(II). Analytica Chimica Acta, 2008, 616(1): 115-121
    [12] Midorikawa T., Tanoue E. Molecular masses and chromophoric properties of dissolved organic ligands for copper (II) in oceanic water. Marine Chemistry, 1998, 62(3-4): 219-239
    [13] 黄世德, 梁生旺. 分析化学: 下册. 北京:中国中医药出版社, 2005
    [14] Stedmon C. A., Markager S. Resolving the variability in dissolved organic matter fluorescence in a temperate estuary and its catchment using PARAFAC analysis. Limnology Oceanography, 2005, 50(2): 686-697
    [15] Stedmon C. A., Markager S. Tracing the production and degradation of autochthonous fractions of dissolved organic matter by fluorescence analysis. Limnology Oceanography, 2005, 50(5): 1415-1426
    [16] Yao Xin, Zhang Yunlin, Zhu Guangwei, et al. Resolving the variability of CDOM fluorescence to differentiate the sources and fate of DOM in Lake Taihu and its tributaries. Chemosphere, 2011, 82(2): 145-155
    [17] Divya O., Venkataraman V., Mishra A. K. Analysis of metal ion concentration in humic acid by excitation-emission matrix fluorescence and chemometric methods. Journal of Applied Spectroscopy, 2009, 76(6): 864-875
    [18] Wu Jun, Zhang Hua, Shao Liming, et al. Fluorescent characteristics and metal binding properties of individual molecular weight fractions in municipal solid waste leachate. Environmental Pollution, 2012, 162: 63-71
    [19] Murphy K. R., Stedmon C. A., Waite T. D., et al. Distinguishing between terrestrial and autochthonous organic matter sources in marine environments using fluorescence spectroscopy. Marine Chemistry, 2008, 108(1-2): 40-58
    [20] Chen Wen, Westerhoff P., Leenheer J. A., et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter. Environmental Science & Technology, 2003, 37(24): 5701-5710
    [21] Lu Fan, Chang C. H., Lee D. J., et al. Dissolved organic matter with multi-peak fluorophores in landfill leachate. Chemosphere, 2009, 74(4): 575-582
    [22] Yu Guanghui, Wu Minjie, Wei Guangran, et al. Binding of organic ligands with Al (Ⅲ) in dissolved organic matter from soil: Implications for soil organic carbon storage. Environmental Science & Technology, 2012, 46(11): 6102-6109
    [23] Williams C. J., Yamashita Y., Wilson H. F., et al. Unraveling the role of land use and microbial activity in shaping dissolved organic matter characteristics in stream ecosystems. Limnology and Oceanography, 2010, 55(3): 1159-1171
    [24] Guo Xujing, He Liansheng, Li Qiang, et al. Investigating the spatial v??汩楡湢歩?瑩潴?愠捯楦搠楤捩?浳潯楬敶瑥楤攠獯?潧晡??佣??慡湴摴?捲漠浱灵敡瑮楴瑩楴潹渠?扮祤??慯?慰湯摳??杩??圠慩瑮攠牌?剫敥猠敗慵牬捩桡???ふと???????ぬ????ち?????ど?eering, 2014, 62: 93-101
    [25] Henderson R. K., Baker A., Murphy K. R., et al. Fluorescence as a potential monitoring tool for recycled water systems: A review. Water Research, 2009, 43(4): 863-881
    [26] Chen W. B., Smith D. S., Guéguen C. Influence of water chemistry and dissolved organic matter (DOM) molecular size on copper and mercury binding determined by multiresponse fluorescence quenching. Chemosphere, 2013, 92(4): 351-359
    [27] Irving H., Williams R. J. P. Order of stability of metal complexes. Nature, 1948, 162(4123): 746-747
    [28] Martins E. O., Drakenberg T. Cadmium (II), zinc (II), and copper (II) ions binding to bovine serum albumin. A 113Cd NMR study. Inorganica Chimica Acta, 1982, 67: 71-74
    [29] Coble P. G. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Marine Chemistry, 1996, 51(4): 325-346
    [30] Coble P. G., Schultz C. A., Mopper K. Fluorescence contouring analysis of DOC intercalibration experiment samples: A comparison of techniques. Marine Chemistry, 1993, 41(1-3): 173-178
    [31] Cuss C. W., Guéguen C. Impacts of microbial activity on the optical and copper-binding properties of leaf-litter leachate. Frontiers in Microbiology, 2012, 166(3): 65-77
    [32] 朱燕婉, 陆长清. 腐殖酸-锌络合物稳定性的研究. 土壤学报, 1982, 19(1): 55-61 Zhu Yanwan, Lu Changqing. Study on the stability constants of zinc-humic acid complexes. Acta Pedologica Sinica, 1982, 19(1): 55-61(in Chinese)
    [33] 王伟伟, 吴宏海, 郭杏妹, 等. 水体沉积物中有机质结构特征与毒害有机物的吸附模式研究. 海洋环境科学, 2008, 27(6): 566-570 Wang Weiwei, Wu Honghai, Guo Xingmei, et al. Study on structure characters and sorption mode of organic sediment in water. Marine Environmental Science, 2008, 27(6): 566-570(in Chinese)
    [34] Tipping E. Cation Binding by Humic Substances. Cambridge: Cambridge University Press, 2002
    [35] Lu Yuefeng, Allen H. E. Characterization of copper complexation with natural dissolved organic matter (DOM
  • 加载中
计量
  • 文章访问数:  2403
  • HTML全文浏览数:  2064
  • PDF下载数:  762
  • 施引文献:  0
出版历程
  • 收稿日期:  2014-09-25
  • 刊出日期:  2016-06-03
袁冬海, 崔骏, 洪志强, 闻丽, 王京刚, 马文林, 李俊奇. 白洋淀沉水植物腐解溶解性有机物与重金属的相互作用[J]. 环境工程学报, 2016, 10(5): 2184-2192. doi: 10.12030/j.cjee.201408012
引用本文: 袁冬海, 崔骏, 洪志强, 闻丽, 王京刚, 马文林, 李俊奇. 白洋淀沉水植物腐解溶解性有机物与重金属的相互作用[J]. 环境工程学报, 2016, 10(5): 2184-2192. doi: 10.12030/j.cjee.201408012
Yuan Donghai, Cui Jun, Hong Zhiqiang, Wen Li, Wang Jinggang, Ma Wenlin, Li Junqi. Interaction between dissolved organic matter released by macrophyte decomposition and heavy metal in Lake Baiyangdian[J]. Chinese Journal of Environmental Engineering, 2016, 10(5): 2184-2192. doi: 10.12030/j.cjee.201408012
Citation: Yuan Donghai, Cui Jun, Hong Zhiqiang, Wen Li, Wang Jinggang, Ma Wenlin, Li Junqi. Interaction between dissolved organic matter released by macrophyte decomposition and heavy metal in Lake Baiyangdian[J]. Chinese Journal of Environmental Engineering, 2016, 10(5): 2184-2192. doi: 10.12030/j.cjee.201408012

白洋淀沉水植物腐解溶解性有机物与重金属的相互作用

  • 1. 北京建筑大学, 北京应对气候变化研究与人才培养基地, 城市雨水系统与水环境省部共建教育部重点实验室, 北京 100044
  • 2. 北京化工大学化学工程学院, 北京 100029
  • 3. 北京博奇电力科技有限公司, 北京 100022
基金项目:

国家自然科学基金资助项目(51209003)

国家科技支撑计划项目(2012BAJ21B08)

摘要: 针对白洋淀秋冬季节水生植物腐解释放大量溶解性有机物(DOM)的问题,利用紫外可见光谱(UV-Vis)和激发发射光谱(EEMs)结合平行因子分析法(PARAFAC)对DOM样品进行表征和分离。实验结果表明,PARAFAC共分离出4种组分(C1、C2、C3和C4),类腐殖酸组分C1和C2、类蛋白组分C3、含有类蛋白组分和类富里酸组分共同组成的C4。此外,对样品进行荧光淬灭滴定实验来研究DOM与重金属(Cu (Ⅱ)和Cd (Ⅱ))的相互作用,发现Cu (Ⅱ)对所有组分都存在明显的淬灭效果,并可以较好地拟合出络合常数(lgK),而Cd (Ⅱ)只与C4有较好的络合效果,这是由于C4中的类富里酸成分所造成的。研究进一步发现,样品U2中类蛋白组分C3和C4对重金属的淬灭效果比样品U0的类蛋白组分明显。这是由于样品U2中所添加的植物量较多,而植物腐解所释放的主要成分为类蛋白物质,有助于增强类蛋白组分的络合能力。研究结果可为科学评价水生植物腐解释放DOM对水体中重金属的迁移转化提供依据。

English Abstract

参考文献 (35)

返回顶部

目录

/

返回文章
返回