浸没式超滤膜处理再生水过程中的膜污染与化学清洗

洪云, 肖萍, 张伟军, 董伟, 王东升. 浸没式超滤膜处理再生水过程中的膜污染与化学清洗[J]. 环境工程学报, 2016, 10(5): 2495-2500. doi: 10.12030/j.cjee.201406036
引用本文: 洪云, 肖萍, 张伟军, 董伟, 王东升. 浸没式超滤膜处理再生水过程中的膜污染与化学清洗[J]. 环境工程学报, 2016, 10(5): 2495-2500. doi: 10.12030/j.cjee.201406036
Hong Yun, Xiao Ping, Zhang Weijun, Dong Wei, Wang Dongsheng. Membrane fouling and chemical cleaning for wastewater reclamation using submerged ultrafiltration membrane[J]. Chinese Journal of Environmental Engineering, 2016, 10(5): 2495-2500. doi: 10.12030/j.cjee.201406036
Citation: Hong Yun, Xiao Ping, Zhang Weijun, Dong Wei, Wang Dongsheng. Membrane fouling and chemical cleaning for wastewater reclamation using submerged ultrafiltration membrane[J]. Chinese Journal of Environmental Engineering, 2016, 10(5): 2495-2500. doi: 10.12030/j.cjee.201406036

浸没式超滤膜处理再生水过程中的膜污染与化学清洗

  • 基金项目:
  • 中图分类号: X703

Membrane fouling and chemical cleaning for wastewater reclamation using submerged ultrafiltration membrane

  • Fund Project:
  • 摘要: 以超滤膜处理再生水过程为对象,对膜污染的主要有机物、污染膜的清洗效果以及清洗前后表观形态的变化进行了分析,了解膜污染物的主要有机物。结果表明,污染物会在PVDF超滤膜表面不断累积,形成滤饼层。同时污染物能够进入膜孔内部,在外截面层造成严重的堵塞,导致通量下降,污染严重。随着运行时间的增加,膜表面污染程度越来越严重,化学清洗对污染物的去除效果有限。利用体积排阻色谱、三维荧光光谱和红外光谱等手段对洗脱液进行分析发现,蛋白类有机物是造成超滤膜污染的主要有机物。
  • [1] 刘鹤, 李永峰, 程国玲. 膜分离技术及其在饮用水处理中的应用. 上海工程技术大学学报, 2008, 22(1): 48-53 Liu He, Li Yongfeng, Cheng Guoling. Membrane separation technology and its application in drinking water treatment. Journal of Shanghai University of Engineering Science, 2008, 22(1): 48-53(in Chinese)
    [2] 孙丽华, 李星, 杨艳玲, 等. 浸没式超滤膜处理地表水除污染效能实验研究. 膜科学与技术, 2010, 30(1): 69-72 Sun Lihua, Li Xing, Yang Yanling, et al. Study on the removal efficiency with surface water pollutant by immersed ultrafitration membrane. Membrane Science and Technology, 2010, 30(1): 69-72(in Chinese)
    [3] Kim H. C., Dempsey B. A. Effects of wastewater effluent organic materials on fouling in ultrafiltration. Water Research, 2008, 42(13): 3379-3384
    [4] Kerry J. H., Clark M. M. Fouling of microfiltration and ultrafiltration membranes by natural waters. Environmental Science & Technology, 2002, 36(16): 3571-3576
    [5] Fu L. F., Dempsey B. A. Modeling the effect of particle size and charge on the structure of the filter cake in ultrafiltration. Journal of Membrane Science, 1998, 149(2): 221-240
    [6] Cho J., Amy G., Pellegrino J., et al., Characterization of clean and natural organic matter (NOM) fouled NF and UF membranes, and foulants characterization. Desalination, 1998, 118(1-3): 101-108
    [7] Noble R. D., Stern S. A. Membrane Separations Technology: Principles and Applications. Amsterdam: Elsevier, 1999
    [8] 刘忠洲, 续曙光, 李锁定. 微滤、超滤过程中的膜污染与清洗. 水处理技术, 1997, 23(4): 187-193 Liu Zhongzhou, Xu Shuguang, Li Suoding. Membrane fouling and cleaning in UF and MF. Technology of Water Treatment, 1997, 23(4): 187-193(in Chinese)
    [9] 许振良. 膜法水处理技术. 北京: 化学工业出版社, 2001: 148-149
    [10] Nikolova J. D., Islam M. A. Contribution of adsorbed layer resistance to the flux-decline in an ultrafiltration process. Journal of Membrane Science, 1998, 146(7): 105-111
    [11] Hilal N., Ogunbiyi O. O., Miles N. J., et al. Methods employed for control of fouling in MF and UF membranes: A comprehensive review. Separation Science and Technology, 2005, 40(10): 1957-2005
    [12] Xiao P., Xiao F., Wang D. S., et al. Investigation of organic foulants behavior on hollow-fiber UF membranes in a drinking water treatment plant. Separation and Purification Technology, 2012, 95(5): 109-117
    [13] Mietton-peuchot M., Ranisio O. Study of behavior of membranes on the presence of anionic or nonionic surfactants, a presentation at the 7th World Filtration Congress in Budapest. Budapest, 1996
    [14] Nystrom M., Zhu H. H. Characterization of cleaning results using combined flux and streaming potential methods. Journal of Membrane Science, 1997, 131(1-2): 195-205
    [15] Howe K. J., Ishida K. P., Clark M. M. Use of ATR/FTIR spectrometry to study fouling of microfiltration membranes by natural waters. Desalination, 2002, 147(1-3): 251-255
    [16] Jarusutthirak C., Amy G. Role of soluble microbial products (SMP) in membrane fouling and flux decline. Environmental Science & Technology, 2006, 40(3): 969-974
    [17] Lee N., Amy G., Croué J. P., et al. Identification and understanding of fouling in low-pressure membrane (MF/UF) filtration by natural organic matter (NOM). Water Research, 2004, 38(20): 4511-4523
    [18] Chen W., Weaterhoff P., Leenheer J. A., et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter. Environmental Science & Technology, 2003, 37(24): 5701-5710
  • 加载中
计量
  • 文章访问数:  1965
  • HTML全文浏览数:  1627
  • PDF下载数:  372
  • 施引文献:  0
出版历程
  • 收稿日期:  2014-08-20
  • 刊出日期:  2016-06-03
洪云, 肖萍, 张伟军, 董伟, 王东升. 浸没式超滤膜处理再生水过程中的膜污染与化学清洗[J]. 环境工程学报, 2016, 10(5): 2495-2500. doi: 10.12030/j.cjee.201406036
引用本文: 洪云, 肖萍, 张伟军, 董伟, 王东升. 浸没式超滤膜处理再生水过程中的膜污染与化学清洗[J]. 环境工程学报, 2016, 10(5): 2495-2500. doi: 10.12030/j.cjee.201406036
Hong Yun, Xiao Ping, Zhang Weijun, Dong Wei, Wang Dongsheng. Membrane fouling and chemical cleaning for wastewater reclamation using submerged ultrafiltration membrane[J]. Chinese Journal of Environmental Engineering, 2016, 10(5): 2495-2500. doi: 10.12030/j.cjee.201406036
Citation: Hong Yun, Xiao Ping, Zhang Weijun, Dong Wei, Wang Dongsheng. Membrane fouling and chemical cleaning for wastewater reclamation using submerged ultrafiltration membrane[J]. Chinese Journal of Environmental Engineering, 2016, 10(5): 2495-2500. doi: 10.12030/j.cjee.201406036

浸没式超滤膜处理再生水过程中的膜污染与化学清洗

  • 1. 富士康科技集团, 廊坊 065000
  • 2. 中国科学院重庆绿色智能技术研究院膜技术与应用工程中心, 重庆 400714
  • 3. 中国科学院生态环境研究中心环境水质学国家重点实验室, 北京 100085
  • 4. 北京环球中科水务科技有限公司, 北京 100085
基金项目:

摘要: 以超滤膜处理再生水过程为对象,对膜污染的主要有机物、污染膜的清洗效果以及清洗前后表观形态的变化进行了分析,了解膜污染物的主要有机物。结果表明,污染物会在PVDF超滤膜表面不断累积,形成滤饼层。同时污染物能够进入膜孔内部,在外截面层造成严重的堵塞,导致通量下降,污染严重。随着运行时间的增加,膜表面污染程度越来越严重,化学清洗对污染物的去除效果有限。利用体积排阻色谱、三维荧光光谱和红外光谱等手段对洗脱液进行分析发现,蛋白类有机物是造成超滤膜污染的主要有机物。

English Abstract

参考文献 (18)

返回顶部

目录

/

返回文章
返回